
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

ABC: Adaptive Binary Cuttings for Multidimensional
Packet Classification

Haoyu Song, Member, IEEE, and Jonathan S. Turner, Fellow, IEEE, ACM

Abstract—Decision tree-based packet classification algorithms
are easy to implement and allow the tradeoff between storage
and throughput. However, the memory consumption of these
algorithms remains quite high when high throughput is required.
The Adaptive Binary Cuttings (ABC) algorithm exploits another
degree of freedom to make the decision tree adapt to the geometric
distribution of the filters. The three variations of the adaptive
cutting procedure produce a set of different-sized cuts at each
decision step, with the goal to balance the distribution of filters
and to reduce the filter duplication effect. The ABC algorithm
uses stronger and more straightforward criteria for decision tree
construction. Coupled with an efficient node encoding scheme, it
enables a smaller, shorter, and well-balanced decision tree. The
hardware-oriented implementation of each variation is proposed
and evaluated extensively to demonstrate its scalability and sensi-
tivity to different configurations. The results show that the ABC
algorithm significantly outperforms the other decision tree-based
algorithms. It can sustain more than 10-Gb/s throughput and is
the only algorithm among the existing well-known packet classifi-
cation algorithms that can compete with TCAMs in terms of the
storage efficiency.

Index Terms—Decision tree, packet classification.

I. INTRODUCTION

P ACKET classification plays an important role in both edge
and core routers to provide advanced network services.

Despite the vast body of existing work, packet classification re-
mains an open and challenging problem. On the one hand, net-
work security, network virtualization, and network quality of
service (QoS) are the driving factors for large-scale packet clas-
sification involving thousands to tens of thousands of filters in
a single router. On the other hand, increasing network traffic
poses greater challenges for fast packet classification. Today,
10-Gb/s connections are common in edge and core networks
while the 40- or even 100-Gb/s links are starting to be deployed
at scale in operational networks. A moderate 10-GbE line card
needs to classify 15 million packets per second.
Designing a general packet classification system requires

significant engineering considerations. Although TCAMs have
been widely adopted in many high-end solutions, there are
scenarios where algorithmic solutions are preferred. If an

Manuscript received March 20, 2008; revised December 14, 2009 and
December 08, 2011; accepted March 05, 2012; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor J. Yates.
H. Song is with Network Research, Huawei Technologies, Santa Clara, CA

95050 USA (e-mail: shykcl@gmail.com).
J. S. Turner is with the Computer Science and Engineering Department,

Washington University in St. Louis, St. Louis, MO 63130 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2012.2190519

algorithm can satisfy the worst-case throughput with a small
amount of memory, it is not worth investing TCAMs due to
the cost, power dissipation, and board footprint considerations.
For algorithmic solutions, the data structure can be stored in
different types of memory devices, such as DRAM, SRAM, or
even embedded memory. Today’s ASIC has been able to embed
up to a few hundred megabits of memory on-chip (e.g., IBM’s
eDRAM). The flexibility offered by the algorithmic solutions
has an important implication: smaller storage allows the use
of faster (but more expensive) memory devices to boost the
throughput. If everything can be squeezed on-chip, the system
throughput is maximized accordingly. This is also in line with
the trend for system-on-chip integration that can significantly
boost the line-card port density.
However, memory consumption of the packet classification

algorithms is often pessimistic partly because of the intrinsic
complexity of the problem [1]. To compete with TCAMs, an
algorithm needs to ensure that its storage is more scalable and
actually cheaper. Although it is hard to measure with great ac-
curacy, we can still take some hints from the cell density and
the manufacturing cost of different technologies. For example,
a TCAM cell typically uses 14–16 transistors to store a bit, an
SRAM cell uses six transistors, and an SDRAM cell uses just
one transistor and one capacitor. We can reasonably assume that
a bit in a TCAM component costs about 10 bits in an SRAM
component. Since a TCAM component usually consumes 18 B
(144 bits) to store a 5-tuple filter, an SRAM-based algorithm
should consume no more than 180 B per filter in order to com-
pete with TCAM. Unfortunately, many well-known algorithms
fail to pass this criterion. For example, the Recursive Flow Clas-
sification (RFC) algorithm is very fast, but it consumes more
than 1600 B per filter for a filter set with only 600 filters [2].
Similar inefficiency exists in some other algorithms, such as
the Cross-producting algorithm [3], the Bit Vector (BV) algo-
rithm [4], and the Aggregated Bit Vector (ABV) algorithm [5].
They all suffer a significant storage penalty, even though their
throughput is comparable to TCAMs.
The decision tree-based algorithms [6]–[8] offer more flex-

ible control over the storage. A decision tree is built by splitting
the filter set recursively based on partial filter information. The
splitting stops when each subset contains fewer filters than a pre-
defined bucket size. The filters in each of these subsets are orga-
nized in a priority list. Gupta and McKeown concluded that it is
impossible to arrive at a practical worst-case solution for packet
classification [6] due to the complexity of the underlying point
location problem [1]. Hyafil and Rivest first proved that the
problem of building optimal decision trees in the sense of mini-
mizing the search steps is NP-complete [9]. Later, Murphy and
McCraw proved that construction of storage-optimal decision
trees is also NP-complete [10]. No matter what measurements

1063-6692/$31.00 © 2012 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

we take, the attempt to construct a globally optimal decision
tree is intractable. For this reason, all previous algorithms are
heuristic-based, which focus on the local optimality only. The
packet classification is performed by testing the decision tree
and linearly searching the stored filters when a leaf node is
reached. The decision tree-based algorithms are easy to imple-
ment in both software and hardware, but their performance is
very sensitive to the filter set structure. In this paper, we scruti-
nize the fundamental reasons of the memory and throughput in-
efficiency in decision tree constructions. Based on our observa-
tions, we change the decision-making criteria to better comply
with the high-level design goal and introduce extra degrees of
freedom that allow more intelligent space splitting. The new al-
gorithm comes with three different variations that are able to
scale to large filter sets and provide sufficient throughput for
10-GbE networks when using the commodity off-chip memory
devices.

II. RELATED WORK

The decision tree (DT) construction process is all about split-
ting the filter set recursively by using partial header informa-
tion. It is crucial to limit the storage that is used to implement
the data structure as well as the effort required to traverse the
tree in order to find the best matching filter. At each tree node, a
decision is made to split the current filter set into a number of
subsets . Each subset represents a child node. We
know that

If bucket size for , we keep splitting . Otherwise,
the corresponding node becomes a leaf. It is common that

and for some and , which makes the
decision tree less efficient.
Woo proposed a generic approach to split the filter set [8]. At

each tree node, a header bit that was not examined in any an-
cestor nodes is chosen. The current filters are then copied into
one or both child nodes according to the value of the bit (i.e.,
“1,” “0,” or “don’t care”). The bit selection criteria seek to min-
imize both the tree depth and the tree size. The process works as
follows: At each tree node, all the current filters are evaluated
first to get the statistics of the 1/0 distribution and the number
of “don’t care” specifications for every bit position. Then, the
bit at the position with the fewest “don’t care” specifications
and the most uniform distribution of 1’s and 0’s is chosen to
split the filter set. While the algorithm represents a systematic
method for decision tree construction, it is disadvantageous to
split a filter set using only one header bit per step. In practice, it
is desirable to use more bits to generate more subsets in order to
reduce the search time. However, evaluating the entropy of mul-
tiple bits among 100+ filter bits can be prohibitively time-con-
suming (i.e., the process complexity is , where is the
number of filter bits and is the number of bits chosen per step).
In addition, the algorithm does not work directly on most real
filter sets because it requires all the filters to be represented as
ternary bit strings whereas the port fields are typically specified
as ranges.
By contrast, HiCuts [6] and HyperCuts [7] both can generate

multiple subsets per step and are practical for handling general

filter sets directly. They both take the geometric viewpoint of
the problem. A multidimensional space region is cut into some
equal-sized subregions at each recursive cutting step. The cor-
responding subset contains all the filters that overlap the subre-
gion. Locally optimal cutting decisions are made to reduce the
size of subsets and to limit the storage expansion. The process
is equivalent to making decisions based on a few prefix bits
on some header field(s). The major difference between HiCuts
and HyperCuts is that HyperCuts works on multiple dimensions
(i.e., header fields) simultaneously while HiCuts works on just
one dimension at each decision step.
These two algorithms provide better controls on the tradeoff

between throughput and storage. They can significantly alter
the storage and the throughput by maneuvering the tree fanout
and/or the bucket size. However, under a reasonable storage
constraint, the throughput of these algorithms is often poor;
under a desirable throughput constraint, the storage can become
excessively large. There are some other drawbacks to be dis-
cussed in the following section. Despite these issues, the de-
cision tree-based algorithms naturally support a pipelined de-
sign; hence, they can achieve very high throughput when using
a deep pipeline and the parallel bucket matching scheme. More-
over, they allow us to realize simple and efficient implementa-
tions using binary encoding techniques. Incremental updates are
also easily supported by decision trees. These advantages make
this type of algorithms very attractive to real applications. We
are motivated to closely examine the root causes of the ineffi-
ciency in the decision-tree construction process and to devise
new schemes to overcome them.

III. OBSERVATIONS

A good decision tree should have the following properties:
The tree consists of as few nodes as possible, and the path from
the root to any leaf node is short and balanced. In the previous
algorithms, the filter distribution can affect the resulting deci-
sion tree significantly.
The first problem, filter duplication (i.e.,), is

caused by the fact that many filters are weakly specified on some
dimensions with wildcards or large ranges. To reduce the tree
depth, we prefer to make more cuts at each tree node so that
each child node contains fewer filters. However, this also ag-
gravates the duplication problem. As a tradeoff, the previous
algorithms typically set a space expansion factor to bound the
number of duplicated filters. Without exceeding the threshold,
the algorithms make as many cuts as possible per step. This is
done purely experimentally without a solid ground for its global
impact.
Our simulation profiles show that during the DT construction

process, bits from the source or the destination IP address fields
are chosen to split the filter set at about 80% of the DT nodes on
average. Real-world firewall filter sets typically contain many
heavy wildcard filters in these fields; hence they suffer the most
from the filter duplication effect. Since HiCuts and HyperCuts
can only generate equal-sized cuts, they are not very capable of
handling the somewhat contradictory goals of making the tree
both thin and short.
The second problem is skewed filter distribution (i.e.,
for some and). Filter distribution in real filter sets is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG AND TURNER: ABC: ADAPTIVE BINARY CUTTINGS FOR MULTIDIMENSIONAL PACKET CLASSIFICATION 3

often very skewed. From the geometric view, most filters con-
centrate in a small region, while a small number of filters dis-
tribute across a wide range. For example, in real Access Control
List (ACL) filter sets, the filters are fairly specific on the IP ad-
dress fields, but the distribution is highly skewed. HiCuts and
HyperCuts can only make equal-sized cuts per step so the cuts
containing more filters need more steps to split, leading to an
imbalanced decision tree.
We come to the conclusion that the filter distribution directly

affects the DT efficiency. Unfortunately, the cutting strategy of
the previous algorithms is not flexible enough to react to this
fact. To amend this, we can conceive a simple cutting proce-
dure at a DT node as follows. First, we find the set of optimal
cutting points that can balance the distribution of filters among
the cuts and minimize the filter duplication effect. Then, we
sort and register the cutting points. When a DT node is re-
trieved during the lookups, we can simply perform a binary
search on the point values. The search returns the pointer to the
corresponding child node. This method leads to a smaller and
shorter decision tree intuitively. One drawback is that the bi-
nary searching for the pointer can be slower than the direct in-
dexing in HiCuts and HyperCuts where it takes constant time
to get the child pointer. Moreover, storing the cutting points
consumes too much storage, which, in turn, would consume too
much memory bandwidth for lookups. Ideally, we need to opti-
mize the depth and size of the decision tree as well as the size
of the tree node. These insights lead us to propose the Adaptive
Binary Cuttings (ABC) algorithm with three different flavors.
Adapting to the skewed distribution of filters, the key new

idea of the ABC algorithm is to split the filter set based on the
evenness of the filter distribution, rather than the evenness of
the cut volumes. Technically, we have developed three filter-
set-splitting strategies so that the algorithm is able to adapt to
the filter distribution geometrically or virtually. This additional
degree of freedom leads to a balanced decision tree and also re-
duces the filter duplication effect. We use an efficient binary en-
coding scheme similar to the one used in the SST algorithm [11],
which encodes the space-cutting sequence and can directly map
to the bit string of the packet header fields. The encoding scheme
makes the new cutting strategies practical and easy to imple-
ment in both software and hardware. A toy example is depicted
in Fig. 1 to show the flavor of our algorithm, compared to the
HiCuts and the HyperCuts algorithms. There are five filters dis-
tributed in a 2-D plane. The figure shows a single cutting step.
Although our algorithm results in variable-sized cuts, it splits
the filters evenly and avoids any filter duplication. On the con-
trary, HiCuts and HyperCuts both result in regular-sized cuts,
but the filter distribution in these cuts is uneven, and some fil-
ters are duplicated. Coupled with the efficient encoding, our al-
gorithm is set to outperform the previous algorithms. Note that
we cannot use the geometric view to illustrate the third variation
of the ABC algorithm as well as Woo’s algorithm, but the spirit
still holds.
Another important observation concerning the previous algo-

rithms is that their optimization criteria are not strong enough.
First, the HiCuts and the HyperCuts algorithms both have to set
an expansion factor to control the number of child DT nodes
produced per step. Hence each tree node may have a different
number of child nodes. For better memory management and

Fig. 1. Cuttings on a DT node for different algorithms. (a) HiCuts. (b) Hyper-
Cuts. (c) ABC-I. (d) ABC-II.

easy memory access in real implementations, it is convenient
to make every tree node the same size. This causes the nodes
with a small fanout to be underutilized. It is also difficult to de-
termine a proper value of the expansion factor. More impor-
tant, a global expansion factor may not be suitable for all nodes.
The ABC algorithm discards the notion of the expansion factor.
Since our cutting strategies adapt to the filter distribution, each
cut counts, and it does not negatively impact the storage effi-
ciency. Therefore, the ABC algorithm does not need such a pa-
rameter. Given the tree node size, we can always fully use the
capacity by making as many cuts as possible.
Second, all the previous algorithms stop splitting a set only

if the number of filters is smaller than a predefined bucket
size. Such a criterion cannot guarantee either throughput or
storage. The cost to achieve such a goal and its consequence
on the quality of the decision tree are left undetermined.
Blindly sticking with such a global parameter can worsen
the performance in some cases. For some nodes, it might be
worth to keep splitting them until each leaf node contains very
few filters; for some other nodes, even if the filter set is still
relatively large, further node splitting can only do more harm
than good. It is difficult to determine a proper global value
and to compare the performance of different implementations.
The ABC algorithm discards the notion of the bucket size and
instead uses a more natural and meaningful approach to make
the decision. In our algorithm design, we try to answer the
following question: Given a fixed amount of storage, what is
the algorithm’s achievable maximum throughput? We can also
ask the complementary question: In order to achieve a desired
throughput, what is the minimum amount of storage required?
The second question is harder to answer because, without any
prior knowledge, we might set a throughput so high that we can
never achieve. On the other hand, the first question is relatively
easy. We have known that the minimum storage requirement
is simply the storage that is needed to list all the filters. If we
store the filters this way, the throughput is solely determined
by the number of filters. When more storage is allowed, we can
construct a decision tree by intelligently splitting the filter set
for higher throughput. Clearly, each decision-tree splitting step
will increase the storage monotonically. Our goal is to make the
“optimal” decisions that consistently improve the throughput
until the given storage is used up. Since the actual performance
can be guaranteed only by the worst-case bound, we always
try to improve the worst-case throughput performance at each
step. This is achieved by evaluating all the current DT branches
and the number of filters remaining in each current leaf node,
and then choosing the branch that causes the current worst-case
throughput to continue working on, as long as the storage
budget allows.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

Combining the aforementioned elements, the ABC algorithm
is not only easy to understand, but also easy to evaluate. In
addition to all the above improvements, we also introduce
several new refinements to further improve the algorithm’s
performance.

IV. ALGORITHM DESCRIPTION

In essence, the decision-making process applies different de-
grees of freedom for HiCuts, HyperCuts, and Woo’s algorithm.
HiCuts chooses some number of unexamined prefix bits from
only one header field to split the filter set at each step; Hyper-
Cuts chooses some number of unexamined prefix bits frommul-
tiple header fields at each step; Woo’s algorithm chooses any
single bit (not necessarily a prefix bit) from any header field
per step. With extra flexibility to choose the bits for filter set
splitting, the performance of the resulting decision tree can po-
tentially become better. However, the bit-chosen mechanisms
have different implications on the storage requirements of the
decision tree nodes. For example, if a filter contains dimen-
sions and bits (typically and for a 5-tuple
IP packet filter), HiCuts needs bits to encode the cut-
ting dimension at each nonleaf tree node; HyperCuts needs a
-bit bitmap to indicate the cutting dimensions; Woo’s algo-

rithm needs bits to encode the position of the bit that is
used to split the filter set. In addition to this information, HiCuts
and HyperCuts also need to encode the number of bits used on
the chosen dimension(s). Finally, each tree node needs to store
pointers to its child nodes. If all the tree nodes are of the same
size, we can store all the sibling child nodes of a tree node in
consecutive memory locations; therefore, a base pointer to the
first child node is sufficient to address all the child nodes [12].
Note that every additional header bit would double the number
of child nodes. We will show that this can significantly affect
the overall storage efficiency.
Our new algorithm goes a step further than the previous al-

gorithms in terms of the bit selection strategy. Not only can
we choose bits from any dimension and any position to split
the filter set, but each resulting subset may consume a different
number of filter bits. Basically, the set-splitting decision at each
tree node can be represented as one or more full binary Cut-
ting Shape Trees (CSTs). We encode each CST with a Cutting
Shape Bitmap (CSB) that is essentially identical to the SBM in
SST [11]. The details will become clear shortly. Right now, let
us focus on the high-level idea. The following pseudocode de-
scribes the basic decision-tree construction algorithm.

Build_DT

1. Initialize a single-node tree in which the root contains
all the filters;

2. while (current storage the predefined storage budget
AND

3. some current leaf nodes have 3 filters) {
4. let the set of leaf nodes with 3 filters;
5. select which requires the longest time to search

a filter in the worst case;
6. split node to produce the CSTs and the new child

DT nodes;
7. }

From the algorithm, we can see that the decision is guided by
the memory consumption (line 2). As long as more memory is
expendable, the algorithm seeks to use it to improve the lookup
throughput. A tree node is not worth splitting further if it con-
tains less than four filters (line 3). Because in such a case if
the tree node is split, the resulting child nodes at best contain
one or two filters each, but the search path is now one layer
deeper. The cost of retrieving and decoding one more tree node
is greater than simply performing a linear search on the filters.
On the other hand, if a tree node contains four or more filters, it
might be worth continuing the splitting process.
The chosen leaf node identifies the current worst-case

searching path (line 5). The path is determined by calculating
the maximum cost (i.e., the largest number of bytes) to access
the last filter at any leaf node. Clearly, the cost is a function
of the leaf node depth, the tree node size, the number of filters
in the list, and the filter size. It is easy to find the current
worst-case path if we maintain a dynamic sorting data structure
such as a heap that uses the current cost as the key. In each
loop, we remove the highest path from the heap, split the
corresponding leaf node, and then insert the newly generated
paths into the heap.
The critical part of the algorithm is how to split a leaf node

and produce the CSTs (line 6). Here, we derive three different
approaches. We discuss them individually and then compare
them together. Before we get into the details, we define an im-
portant parameter that is used as a metric for the quality of
the DT node cuttings. If at a DT node cutting step, a candi-
date scheme divides the current filter set into subsets of size

, we let

(1)

For example, in Fig. 1(a), the preference value is
. Similarly, in Fig. 1(b)–(d),

the preference value is , , and , respectively. We
consider the best decision as the one that minimizes the
preference value. The validity of the metric can be justified
heuristically. Note that the preference has the smallest value
when the subsets are equal in size. The preference value is
also made smaller when the number of duplicated filters is
minimized. Hence, the metric seeks to mitigate the two prob-
lems mentioned in Section III simultaneously so that a better
decision tree can be achieved.
Now we start to describe how a DT node is produced, en-

coded, and searched.

A. ABC Variation I

1) Producing and Encoding the CST: This variation pro-
duces a single CST at each DT node. We map each header field
to a space dimension and perform multiple variable-sized cut-
tings per tree node. The maximum number of cuttings is con-
strained by the tree node size. The cuttings at a DT node are done
step by step. At each step, we choose one of the subregions pro-
duced so far and split it into two equal-sized subregions along
a certain dimension until we run out of space in the DT node.
Each cutting resembles a binary tree node splitting, and each
resulting subregion corresponds to a CST leaf node. Therefore,
we map the cutting sequence at a DT node to a full binary tree

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG AND TURNER: ABC: ADAPTIVE BINARY CUTTINGS FOR MULTIDIMENSIONAL PACKET CLASSIFICATION 5

Fig. 2. ABC-I: cuts and lookup on a DT node.

with leaf nodes. The whole data structure can be envisioned as
a tree-in-tree, where each DT node contains a small binary tree
that describes the cutting decisions. Fig. 2 shows an example on
a 2-D plane where a DT node covers the entire region and the
node size allows us to cut the region into eight subregions. As-
sume we end up with the subregions as shown in the figure. The
cutting process can be uniquely described by the binary CST
shown in the figure: We cut the region on the -axis first (node
is labeled with and is split into two nodes and), then we

cut the left subregion on the -axis (node is labeled with and
is split into two nodes and 0), and cut the right subregion on
the -axis (node is labeled with and is split into two nodes
and). The process goes on until we generate eight subregions,
which map to the eight leaf nodes 0 to 7 in the CST.
All information needed for reconstructing the cutting process

is embedded in the CST: the number of subregions , the cutting
sequence, and the cutting shape. The label of the CST node (i.e.,
the cutting dimension) needs bits to encode, where
is the number of header fields involved.
The CST can be efficiently encoded with a bitmap that we

name CSB. The encoding scheme is identical to the SBM used
in the SST algorithm [11]. We associate each CST node with a
bit. The bit value “0” is assigned to the leaf nodes, and “1” is
assigned to all the other nodes. The CSB consists of this set of
bits, which are listed in breadth-first traversal order. Since the
CST root must have two child nodes and the bit associated with
it is always “1,” we exclude this bit from the CSB and effectively
use only bits to encode the CST if there are leaf nodes.
In the example shown in Fig. 2, we encode the CST with the
CSB “11 10 11 10 00 00 00.” Each “0” in the CSB indicates a
subregion (i.e., a new child DT node). The new child DT nodes
are indexed incrementally using their order as it appears in the
CSB. The first child DT node is given the index 0.
The CST node label that indicates the cutting dimension is

also collected in breadth-first traversal order. The label list is
shown as the Cut Dim Vector (CDV) in Fig. 2. The vector con-
sumes bits.

For a -dimensional filter set, it is often the case that some
dimensions are never used in a particular CST.We can therefore
include a -bit vector in each DT node to indicate which dimen-
sions are used. Then, if only dimensions are used, we need
only bits to encode the cutting dimensions.
This optimization can save the memory to allow more cuttings
per DT node. For example, if , , and ,
this encoding scheme requires just 12 bits in contrast to 21 bits
needed before.
After performing the cuttings at a DT node, each subregion

represents a child DT node. However, it is possible that some
of the child DT nodes contain no filters at all, so it is ineffi-
cient to keep a pointer and allocate memory for each of them.
Instead, we only keep the child DT nodes with filters. As in the
Tree Bitmap algorithm [12], an Extending Path Bitmap (EPB)
of bits is used to indicate the presence of the child DT nodes.
Bit of the EPB is set to “1” if the child DT node is present.
Otherwise, the bit is set to “0.” When all the child DT nodes are
packed together, the pointer to the first child DT node and the
EPB are sufficient to address any child DT node.
So far, we have shown how to encode a DT node with up to
child nodes. Nowwe explain how to come up with the optimal
CST at a DT node.
We start from a single node CST that represents the whole

region covered by the current DT node. If the current number
of CST leaf nodes is less than (i.e., the number of subregions
is less than), we choose one CST leaf node (subregion) to cut
on a specific dimension. We repeat this step until the CST has
leaf nodes. At each step, all possible cuttings on every CST

leaf node and on every dimension are evaluated. The CST leaf
node and the cutting dimension that canminimize the preference
value are chosen to grow the CST.
Formally, assume the current CST has leaf

nodes that divide the DT node filters into subsets of
size . If we split the node on the dimension ,
is replaced with and . Our goal is to find the leaf

node and the dimension that can minimize the preference
value . From (1), we have

(2)

Hence, in order to find the minimum , we only need to
evaluate each of the current CST leaf nodes to find the and
that minimize the value of .
2) Decoding the CST: The lookup process traverses the

decision tree and compares the packet header to the filters
stored in the leaf DT node. At each DT node along the path, the
CSB needs to be decoded to determine which child DT node to
follow.
The CSB decoding algorithm is similar to the SBM decoding

algorithm for SST [11]. In CSB, each “0” corresponds to a sub-
region, and each “1” corresponds to a cutting decision. The goal
is to locate the index of the child DT node, for which the corre-
sponding subregion covers the packet header. To describe the al-
gorithm, we index the bits in the CSBwith
and index the elements in the CDV with , from
left to right.
Definition 1: We define as the number of 1’s in the

CSB from CSB[0] to . As an exception, .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Definition 2: We define as the number of 0’s in the
CSB before .
We perform the following step recursively starting from

CSB[0] and CDV[0] until we reach an index for which
, which means a subregion on this DT node has

been located.
• Let the current index in CSB be and the current index
in CDV be . If the value of the next prefix bit from the
dimension is , the next index in CSB is

. The next index in CDV is .
Once we quit the loop at the index in CSB, the index of the

child DT node is simply .
A node decoding example is illustrated in Fig. 2 where the

region at a DT node is cut into eight subregions. The decoding
process needs to figure out the subregion in which the packet
drops and then proceeds to the correct child DT node. Since

, we read the next unexamined header bit from
the field , which is “1.” Hence, the next CSB index

, and the next CDV index .
Since , we need to continue the loop. The next
dimension to check is , and the next unexamined
bit in dimension is “0.” Hence, the next CSB index

and the next CDV index .
Again, , and we need to continue the loop. The next
dimension to check is , and the next unexamined
bit in dimension is “1.” Hence, the next CSB index is

. Since , we quit the loop and
calculate as the child DT node index.

B. ABC Variation II

1) Producing and Encoding the CSTs: In this variation, a DT
node is also split on multiple dimensions like the first variation.
The difference is that the cuttings can generate up to sepa-
rate CSTs, each for one dimension. Fig. 3 shows an example
in which a 2-D region at a DT node is cut along both dimen-
sions. The range on the -dimension is cut into six segments,
and a 10-bit CSB is used to encode the corresponding CST:
“11 00 10 01 00.” Likewise, the range on the -dimension is cut
into four segments, and the corresponding CSB is “01 01 00.”
Overall subregions are produced by the two-dimen-
sional cuttings.
To index these subregions, we incrementally label the leaf

nodes of each CST starting from zero in breadth-first order. This
label, named as Cutting Label, uniquely identifies a segment on
that dimension. Let the number of cuts on each dimension be

. For a particular subregion, let the Cutting Labels
on each dimension be . The subregion index is

(3)

The index of the subregions is shown in Fig. 3. Each subre-
gion, if containing filters, represents a valid child DT node. We
use an EPB of bits to indicate the presence of the
child DT nodes.
In this variation, there is no need to maintain the cutting di-

mension at each CST node, hence the same-sized DT node can
accommodate larger CSTs. Moreover, the total number of sub-
regions (i.e., the potential child DT nodes) is now determined by
the product of the number of leaf nodes of all the CSTs. Assume

Fig. 3. ABC-II: DT node and decoding example.

we have CSTs and each CST has leaf nodes. The overall
memory consumption of a DT node, excluding the base pointer,
is

(4)

The first part is attributed to a -bit vector that indicates the
dimensions used to split the DT node; the second part is at-
tributed to CSBs that encode the CSTs; the last part is at-
tributed to the EPB.
To produce the CSTs at a DT node, we start with single-

node CSTs each for a dimension. At each following step, a leaf
node on one of the CSTs is chosen to split if the cutting leads to
the minimum preference value. The result of the cutting is that
a segment on the chosen dimension is split into two equal-sized
segments. The process terminates when the bits assigned for the
CSTs are used up. At this point, if some CSTs still contain just
one node (i.e., they are not split at all), they are excluded from
the CSB encoding and the corresponding bits in the -bit vector
are set to “0.”
The naive computation of the preference value requires to

evaluate the cutting effect of all the current leaf nodes in all
the CSTs at each step. To simplify the computation, we perform
the similar transformation as in (2). For example, in Fig. 3, we
want to evaluate the new preference value if we cut the leftmost
segment on the dimension . Since only the subregions 0–3 will
be split, we need only to evaluate their contributions to the re-
sulting preference value.
2) Decoding the CSTs: The lookup process is similar to that

in the ABC-I, except now we need to decode multiple CSBs to
find the child DT node index. After each DT node decoding,
some variable number of prefix bits of the selected packet
header fields are examined and used to traverse the decision
tree. A decoding example is shown in Fig. 3, where a packet
drops in the subregion with the index 14.

C. ABC Variation III

1) Producing and Encoding the CST: This variation pro-
duces only a single CST at each DT node. Unlike the other
variations where each header field in a filter is deemed as a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG AND TURNER: ABC: ADAPTIVE BINARY CUTTINGS FOR MULTIDIMENSIONAL PACKET CLASSIFICATION 7

TABLE I
DT NODE BIT CONSUMPTION COMPARISON

dimension, this variation treats each filter as an integral ternary
bit string. Akin to Woo’s algorithm [8], any bit can be chosen to
split the filter set. However, our algorithm is significantly dif-
ferent from Woo’s algorithm. First, as we have discussed, the
high-level decision-tree construction approaches are different.
Second, our algorithm encodes multiple filter bits per DT node.
Third, the two algorithms use different preferences to choose
the bit for filter-set splitting. Our simulations show our algo-
rithm leads to better performance, which means our preference
metric is better than that used in [8].
To produce the CST at a DT node, we start from a single-node

CST and keep splitting some leaf node using a bit from the filter
string until we run out of the storage space at the DT node. At
each step, we evaluate the new preference values for all the leaf
nodes if they are split on any filter bit. The leaf node and the filter
bit that can minimize the preference value are actually used to
grow the CST. The final CST is encoded with a CSB. Each CST
node, except the leaf node, must record the filter bit used to split
the node, which takes bits, where is the filter length.
This information for the entire CST is encoded as a Cutting Bit
Vector (CBV) similar to the CDV in ABC-I. We use an EPB of
bits to indicate the presence of child DT nodes, where is the

number of leaf nodes in the final CST.
2) Decoding the CST: The CST decoding algorithm is sim-

ilar to that in the first variation.

D. Comparison

1) DT Node Capacity: Table I summarizes the bits used by
the data structures in a nonleaf DT node excluding the base
pointer.
The size of nonleaf DT nodes is fixed in real implementa-

tions. The decision tree performance is generally better if more
cuttings can be done at each DT node. Assume 128 bits are as-
signed to encode a DT node (excluding the base pointer) and
each filter consists of five fields (i.e.,) and 104 bits (i.e.,

). From Table I, we can derive that ABC-I supports at
most 22 cuts per DT node and ABC-III supports at most 13 cuts
per DT node. For ABC-II, the maximum number of cuts per DT
node is variable, but generally it can produce more cuts per DT
node than the other two variations due to the product effect.
2) Implementation Complexity: The second difference has

to do with the implementation. Since ABC-I and ABC-III gen-
erate a single CST per DT node and the CST can be very tall,
the DT node processing latency is typically larger than that for
ABC-II, in which all the CSTs can be decoded in parallel. In case
pipelines or multiple parallel lookup engines are used to fill the
memory bandwidth, ABC-II has smaller system complexity and
better performance. However, the preprocessing time of ABC-II
is the largest because it requires more computations to produce
the CSTs at each DT node.

Fig. 4. Decoding the DT node to find the child DT node address.

E. Implementation

TheABC algorithm can be implemented using the state-of-art
ASIC/FPGA hardware or NPU-based multithreading software.
Multiple lookup engines can work on different packets in par-
allel to fully utilize the available memory bandwidth. The core
component of the lookup engine is the CSB decoding logic. A
simple hardware implementation of the CSB decoding uses a
sequential circuit to compute the values of , ,
and the new bit index iteratively on successive clock ticks. For
ABC-I and ABC-III, this takes at most clock ticks. For
ABC-II, multiple copies of the circuit work in parallel, each for
one CSB. This takes at most clock ticks. We need an-
other one or two clock ticks to calculate the child DT node index
and add the offset to the base pointer for the next memory ac-
cess. Decoding a DT node does not need to access the main
memory. Assume we have enough on-chip resource, we can af-
ford a large number of lookup engines. Therefore, the time to
decode a DT node only affects the number of lookup engines
required. The throughput is merely a function of the available
memory bandwidth and the number of memory accesses needed
per packet lookup. A block diagram of the DT node decoding
circuit for ABC-II is shown in Fig. 4. Note that only one CSB
decoding block is required for ABC-I and ABC-III.
The data structure for the algorithm implementation is illus-

trated in Fig. 5. Note that the nonleaf DT nodes may also hold
some filters due to an optimization we adopt in Section V. To
save the memory, each filter is only stored once. When a filter
must be duplicated, we only duplicate the pointer to the filter
because the size of a pointer is much smaller than the size of
a filter. We also attach the priority value of each filter to its
pointer so that a lookup can determine if a filter needs to be com-
pared without actually reading the filter. A smaller priority value
means higher priority. If we have found a matching filter with
the priority value and by reading the filter pointer list, we find
a potential matching filter in the list has the priority value ,
we know immediately that the new filter and all the following
filters in the list cannot lead to a better match.
Table II shows the DT node encoding scheme of a reference

design inwhich eachDT node consumes 16B, each filter pointer
consumes 2 B, and each 5-tuple filter consumes 18 B.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Data structure of the algorithm implementations.

TABLE II
ABC DT NODE ENCODING SCHEME (# BITS)

Note that for ABC-II, 86 bits can be used by the CSBs and the
EPB. The assignment of these bits is dynamically determined by
the number of CSTs and the size of each CST.

V. ALGORITHM OPTIMIZATIONS

The redundant filter removal optimization introduced in Hi-
Cuts [6] and HyperCuts [7] is embedded in the ABC algorithm
by default. In this section, we discuss several new algorithm op-
timizations.

A. Reduce Filters Using a Hash Table

We can use a hash table to handle a portion of the filters so that
the number of filters handled by the decision tree is reduced. A
hash table uses prefix bits of the source IP field and
prefix bits of the destination IP field as the key. A filter is hashed
into if its source IP prefix specifies more than bits and
its destination IP prefix specifies more than bits. We test all
the possible values of and . Assume each hash table bucket
can hold filters. If more than filters are hashed to a same
bucket, only the filters with higher priority are inserted in the
hash table. We choose the hash table that can handle the most
filters. The filters in the hash table are removed from the filter
set. We evaluate some real filter sets and find that 18%–44% of
filters can be removed when , as shown in Fig. 6.

Fig. 6. Effect of filter reduction by using a hash table.

The lookup process needs to search the hash table first. If a
matching filter is found, we keep its priority value and continue
to search the decision tree. If a lower priority matching is found,
the search stops.

B. Filter Partition on the Protocol Field

In all the filter sets we examined, only eight unique protocol
values are specified. There are 13% of filters that have a wild-
card protocol specification on average.
The cutting does not work well on the protocol field. For

example, we need to examine five bits (i.e., produce at least
32 cuts) to differentiate the TCP (0 06) and the ICMP (0
01) protocols. Each cutting unavoidably duplicates all the filters
with the wildcard protocol specification. To solve this problem,
we build a decision tree for each specified protocol value. Each
decision tree handles the filters with the corresponding protocol
value as well as all the filters with the wildcard protocol value.
The lookup process examines a packet’s protocol value first and
then search the decision tree dedicated for it. If a dedicated deci-
sion tree does not exist, then any decision tree can be searched.
This optimization partitions the filters into a minimum

number of subsets and consumes the entire protocol field in just
one step. It can reduce the memory consumption and increase
the lookup throughput. In addition, it reduces the number of
dimensions that need to be considered in the decision trees. For
example, in ABC-I, each CST node now needs only two bits
rather than three to encode the cutting dimension. Therefore,
in the reference design as shown in Table II, a DT node can
support 19 child nodes rather than 16. This helps to improve
the performance further.
Since ABC-III takes a unified view of the filter bit string, we

do not need to apply this optimization to it.

C. Partitioning Filters Based on Duplication Factor

The cutting dimensions and the cutting shape are chosen in
favor of the majority filters at a DT node. Throughout the deci-
sion tree, some filters suffer more duplications than the others.
We profile the number of duplications of each filter for two filter
sets when running ABC-II. As shown in Fig. 7, most filters re-
ceive zero or very few duplications while a relatively small frac-
tion of filters receive a very large number of duplications. The
figure also shows that the higher-priority filters tend to receive
fewer duplications than the lower-priority filters.
We identify a filter as a spoiler if it results in excessive du-

plications. We remove a few top spoilers from the filter set
and then build the decision tree on the remaining filters. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG AND TURNER: ABC: ADAPTIVE BINARY CUTTINGS FOR MULTIDIMENSIONAL PACKET CLASSIFICATION 9

Fig. 7. Filter duplication number distribution.

spoilers can be handled by a small on-chip TCAM. Our sim-
ulation shows that this optimization significantly improves the
algorithm performance.

D. Holding Filters Internally and Reversing Search Order

The HyperCuts algorithm [7] introduces an optimization
called filter pushing, which can reduce the filter duplications
but cannot change the tree size and the throughput. We modify
this optimization using a forward manner. At a DT node, if a
filter would otherwise be duplicated into all the child DT nodes,
we can keep it in the current DT node. This modification helps
to reduce the tree size as well.
Although efficient in storage, this method worsens the

throughput. Fig. 7 shows that the lower-priority filters tend to
receive a larger number of duplications. The large number of
duplications is largely due to the fact that these filters are less
specific, so they effectively overlap with a large number of
decision tree nodes. Using the filter pushing, these filters are
more likely to be held in nonleaf DT nodes. The low-priority
filters also tend to be held close to the DT root. However, the
decision tree can only be searched from root to leaf. Even if
we find a matching filter at an internal node, we cannot stop.
Indeed, we have a good chance to find a better matching filter
down to the search path.
We consider to improve the lookup throughput while re-

taining the gain on the storage. The above observation suggests
that we should search the filter lists using the bottom-up order.
When we find a stored filter list along the searching path, we
do not retrieve the filter list right away. Instead, we push its
pointer into a stack. We begin to pop the pointers in the stack
and search the filter lists only when we reach a leaf node. Using
this order, we search the filters in their natural priority order
and can avoid unnecessary memory accesses.

VI. PERFORMANCE EVALUATION

We are concerned with the two most important performance
characteristics of the ABC algorithm: storage and lookup
throughput. We also discuss the performance of preprocessing
and incremental updates. The storage is made up of two parts:
the decision tree and the filters. The storage of the decision tree
is determined by the number of DT nodes and the size of a DT
node. The storage of the filters is determined by the number
of original filters and the total number of duplicated filters
(recall that each duplicated filter only consumes a pointer). The
storage efficiency and scalability are evaluated by the number
of bytes consumed per filter. As for the throughput, the depth of
a DT branch and the number of filters stored along the branch
determine the worst-case performance on the branch. We use

Fig. 8. Algorithm scalability on filter set size.

the maximum number of bytes retrieved to classify a packet as
the worst-case performance measurement criterion. We use a
suite of synthetic filter sets generated by ClassBench [13]. For
each filter set, we also generate a packet header trace in which
the number of packets is ten times of the number of filters. We
run the lookup algorithm on these traces to collect the average
number of bytes retrieved per packet as the average-case per-
formance measure. The filter sets and the packet traces we used
are documented on a public accessible website [14].

A. Comparison of ABC Variations

1) Scalability on Filter Set Size: First, we assume all the
aforementioned optimizations are used with the exception of the
spoiler filter removal. The hash table bucket size is set to one.
The size of the filter sets ranges from 100 to 10 000 filters.

They are synthesized from an ACL seed filter set, an IP Chain
(IPC) seed filter set, and a firewall (FW) seed filter set. In the
simulation, we set the storage budget to be 100 B per filter. Fig. 8
shows the results.
The algorithm works best on the ACL filter sets. It is inter-

esting to note that memory consumption for the ACL filter set
is well below the budget. This means the algorithm has already
reached the limit of the decision tree. More storage cannot be
exchanged for higher throughput anymore. The algorithm per-
forms the worst for the FW filter sets because these filter sets
contain a lot of filters with wildcard specifications.
The worst-case throughput is two to four times worse than the

average-case throughput. This is mainly due to the imbalance
of the decision tree, although in our algorithm the decision-tree
shape has been adapted to the skewness of the filter distribution.
ABC-I and ABC-II show comparable performance. If we

optimize the DT node encoding scheme for ABC-I to allow
more cuts, ABC-I will outperform ABC-II. The performance
of ABC-III is only acceptable for the ACL and IPC filter sets.
Although ABC-III is the most flexible variation, it supports
the lowest DT node capacity and requires range-to-prefix
conversion. These two factors drag down its throughput.
Another interesting point is that the algorithm performs better

for the FW filter set with 10 000 filters than for the FW filter
sets with 1000–5000 filters. This artificial result is because the
ClassBench tool tends to generate more structured and specific
filters for larger filter sets.
To interpret the throughput performance, we consider a

single 500 MHz 36 QDR-III SRAM chip. It provides a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Tradeoff of storage and throughput.

Fig. 10. Effect of filter reduction using a Hash table.

memory bandwidth of MHz B GB/s. For
the ACL filter set with 10 000 filters, a packet lookup needs
to retrieve 125 B on the average. Hence, we can classify
GB B million packets per second. A fully loaded

10-GbE link can see at most 15 million packets per second. For
the average case, the performance of our algorithm is more than
sufficient for two 10-GbE links when a single memory device
is used. The worst-case performance is two times worse than
the average-case performance, so our algorithm is still capable
of handling one fully loaded 10-GbE link at line speed.
2) Throughput and Storage Tradeoff: In this simulation,

we vary the storage and examine its effect on the lookup
throughput. The simulation runs on the synthetic IPC filter set
with 10 000 filters. We disable the filter reduction optimization.
Fig. 9 shows the results.
When more storage is granted, the lookup performance

steadily gets better. All three variations have the similar av-
erage-case throughput, but the worst-case throughput differs
significantly. ABC-I gives the best overall performance.
3) Sensitivity to Optimizations: Now we examine the algo-

rithm sensitivity to different optimizations. In the simulations,
we use the synthetic ACL filter set with 10 000 filters and an al-
lowance of 50 B per filter. We turn on one optimization a time
to compare to the baseline algorithm.
Fig. 10 shows the effect of the filter reduction using a Hash

table. This optimization significantly improves the worst-case
performance (almost 2 for ABC-II) and moderately improves
the average-case performance.
Fig. 11 shows the effect of performing the protocol field

lookup first. Note that this optimization is only applied to the
first two algorithm variations.
Fig. 12 shows the effect of holding filters internally and re-

versing the search order. We can see this algorithm optimization
only helps to improve the first two variations. It also has the
best effect compared to the other optimizations. The reason it
does not work for ABC-III is that the decision tree of ABC-III is

Fig. 11. Effect of looking up on protocol field first.

Fig. 12. Effect of holding filters internally and reversing search order.

Fig. 13. Effect of removing highly duplicated filters.

Fig. 14. Effect of changing DT node size.

near optimal and holding filters internally increases the lookup
overhead.
Finally, we examine the effect of removing some highly du-

plicated filters from the filter sets. The duplication statistics are
collected from an implementation of the HyperCuts algorithm.
Only 3–14 filters (0.1%–0.3%) are removed from the three filter
sets. However, Fig. 13 shows significant improvement.
4) Effect of DT Node Capacity: So far, the evaluations are

based on our reference design. Now we examine the algorithm
performance when different DT node sizes are used. We eval-
uate five cases with the DT node size of 8, 12, 16, 20, and 24 B.
We turn off all the optimizations and allow 50 B per filter. The
ACL filter set with 10 000 filters is used for this simulation.
As Fig. 14 shows, in the most cases, increasing the DT node

size actually decreases the throughput. This is because under
the same storage restriction, larger node size implies fewer
DT nodes can be supported. Larger DT node size can improve

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SONG AND TURNER: ABC: ADAPTIVE BINARY CUTTINGS FOR MULTIDIMENSIONAL PACKET CLASSIFICATION 11

Fig. 15. Compare ABC to other DT-based algorithms.

TABLE III
DT NODE ENCODING SCHEME FOR OTHER ALGORITHMS (# BITS)

the throughput only if we also increase the storage budget
accordingly.

B. Comparison to Other DT-Based Algorithms

1) Implementation: It should be clear that for HiCuts [6] and
HyperCuts [7], the geometric cutting process is actually iden-
tical to the process of examining several prefix bits on some
packet header fields in sequence. Since the cuts are regular, no
CSB is needed. Each DT node only needs to record which di-
mension(s) is chosen and how many prefix bits are used. For
Woo’s algorithm [8], each DT node only needs to record which
filter bit is chosen.
We layout the DT node format that also consumes four 32-bit

memory words for HiCuts and HyperCuts. A DT node in Woo’s
algorithm requires only two 32-bit memory words. Just as in
the ABC algorithm, we use an EPB and a base pointer to com-
press the child DT node storage. Note that for HiCuts and Hy-
perCuts, the number of cuttings per DT node doubles for each
extra header bit consumed. A DT node supports at most 64 cuts
for HiCuts and HyperCuts, which means at most 6 bits can be
examined at each DT node. The DT node encoding schemes for
the three algorithms are summarized in Table III.
2) Performance Comparison: To make the fair comparison,

we apply the same set of algorithm optimizations to all the im-
plementations. Recall that the previous decision-tree-based al-
gorithms terminate the DT construction algorithm only if all
the leaf nodes contain fewer filters than a predefined bucket
size. Neither storage nor throughput can be fixed before fin-
ishing the DT construction. On the contrary, the ABC algo-
rithm allows us to preset one of the performance targets while
optimizing the other one. To set the basis for comparison, we
run the simulation with different parameter configurations for
the algorithms that covers a wide range of storage-throughput
tradeoff. Fig. 15 illustrates the results on three different filter
sets. The -axis stands for the storage and the -axis stands for

the lookup throughput. Since ABC-I has the best overall per-
formance, we only show the curve for ABC-I. The performance
is getting better when the data point is closer to the bottom left
corner. Clearly, the ABC algorithm outperforms all the other
algorithms.
3) Preprocessing Time: The preprocessing time differs

vastly for the previous algorithms. It depends not only on the
filter set size and structure, but also on the parameter settings.
For well-structured filter sets and slack parameter settings, the
preprocessing can finish within 1 s. However, in many cases,
the preprocessing will last much longer and even never end
(e.g., the number of overlapped filters in a region is greater
than the bucket size). The ideal values can only be determined
through multiple trials.
The preprocessing time of the ABC algorithm is linear to the

storage budget, and it is independent of the filter set structure.
The preprocessing seeks to consume the available memory for
the best throughput performance aggressively in a single run.
Because the DT node needs to generate and encode the CSTs,
it typically takes a few seconds to finish the preprocessing. For-
tunately, packet classification filter sets are relatively static and
the data structure reconstruction is rare.

C. Incremental Updates

Generally, decision tree does not support incremental updates
well due to the filter duplication. To insert a new filter, we may
need to push a filter to many leaf nodes. Filter deletion requires
a similar amount of work. More importantly, insertion and dele-
tion may lead to suboptimal performance of the data structure,
so we have to rebuild the decision tree from scratch at some
point. Since the filters can be stored in the nonleaf DT nodes,
this can help to reduce the number of duplications. That is to
say, if pushing a filter down to the leaf nodes makes too many
duplications, we can store it in some internal nodes to limit the
duplications. Of course, this should only be done with discre-
tion to avoid degrading the throughput.

VII. CONCLUSION

Decision-tree-based algorithms usually mimic the geometric
cutting process, but the decision is conducted in favor of the
evenness of the cut size rather than the evenness of the filter
distribution. Due to the skewness of the filter distribution found
in real filter sets, this approach exaggerates the filter duplication
and results in imbalanced decision trees. Woo’s algorithm aims
to split the filter set more evenly and keep the filter duplication to
a minimum. However, it can only produce a binary decision tree

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

with a large tree depth. Moreover, all these algorithms use some
indirect criteria to guide the decision-tree construction process,
whichmakes the algorithm evaluation and implementation diffi-
cult. The effectiveness of the heuristics is hard to quantify. Both
throughput and storage cannot be constrained before the imple-
mentation, and the real performance can only be known after ex-
periments. They require a considerable amount of guesswork to
fine-tune multiple parameters in several trials for the best result.
We introduce a new degree of freedom to enable variable-

sized cuts per decision step in order to even the filter distribu-
tion and reduce the filter duplication. This results in a higher-
quality decision tree. A simple and compact encoding scheme
makes this feasible. The ABC algorithm ensures that all the DT
nodes have the same size and are fully utilized. Furthermore,
the algorithm applies a natural and performance-guided deci-
sion-making process. We preset the storage budget and then
look for the best achievable throughput. With just a single knob
to tune, our method allows better observability and control-
lability over the algorithm performance. Based on the similar
high-level idea, we derived three variations.
We compare the ABC algorithm to the other decision-tree-

based algorithms includingHiCuts, HyperCuts, andWoo’s algo-
rithm through extensive simulations. TheABC algorithm signif-
icantly improves the storage and throughput performance and is
scalable to large filter sets. The algorithm implementation is suf-
ficient to sustain the real-time packet classification for 10-GbE
lines. The simple implementation and the efficient memory use
make the ABC algorithm an ideal alternative to TCAMs and
other algorithms in many applications.

REFERENCES
[1] M. Overmars and A. van der Stappen, “Range searching and point lo-

cation among fat objects,” J. Algor., vol. 21, pp. 629–656, 1994.
[2] P. Gupta and N. McKeown, “Packet classification on multiple fields,”

in Proc. ACM SIGCOMM, 1999, pp. 147–160.
[3] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and

scalable layer four switching,” in Proc. ACM SIGCOMM, 1998, pp.
191–202.

[4] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching,” in Proc.
ACM SIGCOMM, 1998, pp. 203–214.

[5] F. Baboescu and G. Varghese, “Scalable packet classification,” in Proc.
ACM SIGCOMM, 2001, pp. 199–210.

[6] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” in Proc. IEEE HotI, 1999, pp. 34–41.

[7] S. Singh, F. Baboescu, G. Varghese, and J.Wang, “Packet classification
using multidimensional cutting,” in Proc. ACM SIGCOMM, 2003, pp.
213–224.

[8] T. Y. C. Woo, “A modular approach to packet classification: Al-
gorithms and results,” in Proc. IEEE INFOCOM, 2000, vol. 3, pp.
1213–1222.

[9] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees
is NP-complete,” Inf. Process. Lett., vol. 5, pp. 15–17, 1976.

[10] O. J. Murphy and R. L. McCraw, “Designing storage efficient decision
trees,” IEEE Trans. Comput., vol. 40, no. 3, pp. 315–320, Mar. 1991.

[11] H. Song, J. Turner, and J. Lockwood, “Shape shifting tries for faster IP
route lookup,” in Proc. IEEE ICNP, 2005, pp. 358–367.

[12] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hardware/soft-
ware IP lookups with incremental updates,” Comput. Commun. Rev.,
vol. 34, no. 2, pp. 97–122, 2004.

[13] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” in Proc. IEEE INFOCOM, 2005, vol. 3, pp. 2068–2079.

[14] H. Song, “Evaluation of packet classification algorithm,” 2007 [On-
line]. Available: http://www.arl.wustl.edu/~hs1/PClassEval.html

Haoyu Song (M’07) received the B.E. degree in elec-
tronics engineering from Tsinghua University, Bei-
jing, China, in 1997, and the M.S. and D.Sc. degrees
in computer engineering from Washington Univer-
sity in St. Louis, St. Louis, MO, in 2003 and 2006,
respectively.
He is currently a Senior Network Architect with

Huawei Technologies, Santa Clara, CA. He was an
MTS Researcher with Bell Labs, Alcatel-Lucent,
Holmdel, NJ, and a Research Assistant with the Ap-
plied Research Laboratory, Washington University.

He has published more than 20 peer-reviewed papers and has filed more than 10
patents for his work on network packet processing and network virtualization.
His research interests include network virtualization and cloud computing,
high-performance networks, algorithms for network packet processing and
security, network chip architecture, and ASIC/FPGA design and verification.

Jonathan S. Turner (M’77–SM’88–F’90) received
the M.S. and Ph.D. degrees in computer science from
Northwestern University, Evanston, IL, in 1979 and
1982, respectively.
He holds the Barbara and Jerome Cox Chair of

Computer Science with Washington University in St.
Louis, St. Louis, MO, and is Director of the Applied
Research Laboratory. He has graduated 21 Ph.D.
students and has served as Chair of the Department
of Computer Science and Engineering from 1992 to
1997 and 2007 to 2008. He was a Member of Tech-

nical Staff with Bell Laboratories, Naperville, IL, from 1977 to 1983, where he
provided the technical leadership on an early project seeking to integrate voice
and data communication using packet switching. He was Co-Founder and Chief
Scientist for Growth Networks, a startup company that developed scalable
switching components for Internet routers and ATM switches, before being
acquired by Cisco Systems in early 2000. He has been awarded 30 patents for
his work on switching systems and has many widely cited publications. His
research centers on the design and analysis of high-performance networks,
and he has led a series of major systems projects over the years that have
demonstrated important innovations in high-performance switching, scalable
multicast, extensible routers, and network virtualization.
Prof. Turner is a Fellow of the Association for ComputingMachinery (ACM),

a member of the National Academy of Engineering, and a member of the Board
of the Computing Research Association. He received the Koji Kobayashi Com-
puters and Communications Award from the IEEE in 1994 and the IEEE Mil-
lenium Medal in 2000.

